2000 character limit reached
Varieties of Languages in a Category (1501.05180v1)
Published 21 Jan 2015 in cs.FL, cs.LO, and math.CT
Abstract: Eilenberg's variety theorem, a centerpiece of algebraic automata theory, establishes a bijective correspondence between varieties of languages and pseudovarieties of monoids. In the present paper this result is generalized to an abstract pair of algebraic categories: we introduce varieties of languages in a category C, and prove that they correspond to pseudovarieties of monoids in a closed monoidal category D, provided that C and D are dual on the level of finite objects. By suitable choices of these categories our result uniformly covers Eilenberg's theorem and three variants due to Pin, Polak and Reutenauer, respectively, and yields new Eilenberg-type correspondences.