Papers
Topics
Authors
Recent
2000 character limit reached

Hermite polynomials, linear flows on the torus, and an uncertainty principle for roots

Published 10 Feb 2016 in math.CA | (1602.03366v2)

Abstract: We study a recent result of Bourgain, Clozel and Kahane, a version of which states that a sufficiently nice function $f:\mathbb{R} \rightarrow \mathbb{R}$ that coincides with its Fourier transform and vanishes at the origin has a root in the interval $(c, \infty)$, where the optimal $c$ satisfies $0.41 \leq c \leq 0.64$. A similar result holds in higher dimensions. We improve the one-dimensional result to $0.45 \leq c \leq 0.594$, and the lower bound in higher dimensions. We also prove that extremizers exist, and have infinitely many double roots. With this purpose in mind, we establish a new structure statement about Hermite polynomials which relates their pointwise evaluation to linear flows on the torus, and applies to other families of orthogonal polynomials as well.

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.