Papers
Topics
Authors
Recent
AI Research Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 73 tok/s
Gemini 2.5 Pro 46 tok/s Pro
GPT-5 Medium 13 tok/s Pro
GPT-5 High 14 tok/s Pro
GPT-4o 86 tok/s Pro
Kimi K2 156 tok/s Pro
GPT OSS 120B 388 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Hermite polynomials, linear flows on the torus, and an uncertainty principle for roots (1602.03366v2)

Published 10 Feb 2016 in math.CA

Abstract: We study a recent result of Bourgain, Clozel and Kahane, a version of which states that a sufficiently nice function $f:\mathbb{R} \rightarrow \mathbb{R}$ that coincides with its Fourier transform and vanishes at the origin has a root in the interval $(c, \infty)$, where the optimal $c$ satisfies $0.41 \leq c \leq 0.64$. A similar result holds in higher dimensions. We improve the one-dimensional result to $0.45 \leq c \leq 0.594$, and the lower bound in higher dimensions. We also prove that extremizers exist, and have infinitely many double roots. With this purpose in mind, we establish a new structure statement about Hermite polynomials which relates their pointwise evaluation to linear flows on the torus, and applies to other families of orthogonal polynomials as well.

Summary

We haven't generated a summary for this paper yet.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube