Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
97 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
44 tokens/sec
o3 Pro
5 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

FPGA Based Implementation of Deep Neural Networks Using On-chip Memory Only (1602.01616v2)

Published 4 Feb 2016 in cs.AR and cs.NE

Abstract: Deep neural networks (DNNs) demand a very large amount of computation and weight storage, and thus efficient implementation using special purpose hardware is highly desired. In this work, we have developed an FPGA based fixed-point DNN system using only on-chip memory not to access external DRAM. The execution time and energy consumption of the developed system is compared with a GPU based implementation. Since the capacity of memory in FPGA is limited, only 3-bit weights are used for this implementation, and training based fixed-point weight optimization is employed. The implementation using Xilinx XC7Z045 is tested for the MNIST handwritten digit recognition benchmark and a phoneme recognition task on TIMIT corpus. The obtained speed is about one quarter of a GPU based implementation and much better than that of a PC based one. The power consumption is less than 5 Watt at the full speed operation resulting in much higher efficiency compared to GPU based systems.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (2)
  1. Jinhwan Park (6 papers)
  2. Wonyong Sung (33 papers)
Citations (63)

Summary

We haven't generated a summary for this paper yet.