Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 62 tok/s
Gemini 2.5 Pro 47 tok/s Pro
GPT-5 Medium 12 tok/s Pro
GPT-5 High 10 tok/s Pro
GPT-4o 91 tok/s Pro
Kimi K2 139 tok/s Pro
GPT OSS 120B 433 tok/s Pro
Claude Sonnet 4 31 tok/s Pro
2000 character limit reached

Mean Field Dynamics of a Network of Wilson-Cowan Neurons with Electrical Synapses (1601.05572v2)

Published 21 Jan 2016 in math.PR

Abstract: In this paper we prove the propagation of chaos property for an ensemble of interacting neurons subject to independent Brownian noise. The propagation of chaos property means that in the large network size limit, the neurons behave as if they are probabilistically independent. The model for the internal dynamics of the neurons is taken to be that of Wilson and Cowan, and we consider there to be multiple different populations. The synaptic connections are modelled with a nonlinear `electrical' model. The nonlinearity of the synaptic connections means that our model lies outside the scope of classical propagation of chaos results. We obtain the propagation of chaos result by taking advantage of the fact that the mean-field equations are Gaussian, which allows us to use Borell's Inequality to prove that its tails decay exponentially.

Summary

We haven't generated a summary for this paper yet.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube