Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
129 tokens/sec
GPT-4o
28 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Analysis of Algorithms and Partial Algorithms (1601.03411v5)

Published 13 Jan 2016 in cs.AI and cs.DS

Abstract: We present an alternative methodology for the analysis of algorithms, based on the concept of expected discounted reward. This methodology naturally handles algorithms that do not always terminate, so it can (theoretically) be used with partial algorithms for undecidable problems, such as those found in artificial general intelligence (AGI) and automated theorem proving. We mention an approach to self-improving AGI enabled by this methodology. Aug 2017 addendum: This article was originally written with multiple audiences in mind. It is really best put in the following terms. Goertzel, Hutter, Legg, and others have developed a definition of an intelligence score for a general abstract agent: expected lifetime reward in a random environment. AIXI is generally the optimal agent according to this score, but there may be reasons to analyze other agents and compare score values. If we want to use this definition of intelligence in practice, perhaps we can start by analyzing some simple agents. Common algorithms can be thought of as simple agents (environment is input, reward is based on running time) so we take the goal of applying the agent intelligence score to algorithms. That is, we want to find, what are the IQ scores of algorithms? We can do some very simple analysis, but the real answer is that even for simple algorithms, the intelligence score is too difficult to work with in practice.

Citations (1)

Summary

We haven't generated a summary for this paper yet.