Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
184 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Computable Artificial General Intelligence (2205.10513v7)

Published 21 May 2022 in cs.AI

Abstract: Artificial general intelligence (AGI) may herald our extinction, according to AI safety research. Yet claims regarding AGI must rely upon mathematical formalisms -- theoretical agents we may analyse or attempt to build. AIXI appears to be the only such formalism supported by proof that its behaviour is optimal, a consequence of its use of compression as a proxy for intelligence. Unfortunately, AIXI is incomputable and claims regarding its behaviour highly subjective. We argue that this is because AIXI formalises cognition as taking place in isolation from the environment in which goals are pursued (Cartesian dualism). We propose an alternative, supported by proof and experiment, which overcomes these problems. Integrating research from cognitive science with AI, we formalise an enactive model of learning and reasoning to address the problem of subjectivity. This allows us to formulate a different proxy for intelligence, called weakness, which addresses the problem of incomputability. We prove optimal behaviour is attained when weakness is maximised. This proof is supplemented by experimental results comparing weakness and description length (the closest analogue to compression possible without reintroducing subjectivity). Weakness outperforms description length, suggesting it is a better proxy. Furthermore we show that, if cognition is enactive, then minimisation of description length is neither necessary nor sufficient to attain optimal performance, undermining the notion that compression is closely related to intelligence. However, there remain open questions regarding the implementation of scale-able AGI. In the short term, these results may be best utilised to improve the performance of existing systems. For example, our results explain why Deepmind's Apperception Engine is able to generalise effectively, and how to replicate that performance by maximising weakness.

Citations (4)

Summary

We haven't generated a summary for this paper yet.