Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 49 tok/s
Gemini 2.5 Pro 53 tok/s Pro
GPT-5 Medium 19 tok/s Pro
GPT-5 High 16 tok/s Pro
GPT-4o 103 tok/s Pro
Kimi K2 172 tok/s Pro
GPT OSS 120B 472 tok/s Pro
Claude Sonnet 4 39 tok/s Pro
2000 character limit reached

Relation Between Stereographic Projection and Concurrence Measure in Bipartite Pure States (1512.07006v2)

Published 22 Dec 2015 in quant-ph

Abstract: One-qubit pure states, living on the surface of Bloch sphere, can be mapped onto the usual complex plane by using stereographic projection. In this paper, after reviewing the entanglement of two-qubit pure state, it is shown that the \emph{quaternionic} stereographic projection is related to concurrence measure. This is due to the fact that every two-qubit state, in ordinary complex field, corresponds to the one-qubit state in quaternionic skew field, called quaterbit. Like the one-qubit states in complex field, the stereographic projection maps every quaterbit onto a quaternion number whose complex and quaternionic parts are related to Schmidt and concurrence terms respectively. Rather, the same relation is established for three-qubit state under \emph{octonionic} stereographic projection which means that if the state is bi-separable then, quaternionic and octonionic terms vanish. Finally, we generalize recent consequences to $2 \otimes N$ and $4\otimes N$ dimensional Hilbert spaces ($N\geq 2$) and show that, after stereographic projection, the quaternionic and octonionic terms are entanglement sensitive. These trends are easily confirmed by direct computation for general multi-particle W- and GHZ-states.

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.