Stable functors of derived equivalences and Gorenstein projective modules (1512.06522v1)
Abstract: From certain triangle functors, called non-negative functors, between the bounded derived categories of abelian categories with enough projective objects, we introduce their stable functors which are certain additive functors between the stable categories of the abelian categories. The construction generalizes a previous work by Hu and Xi. We show that the stable functors of non-negative functors have nice exactness property and are compatible with composition of functors. This allows us to compare conveniently the homological properties of objects linked by the stable functors. Particularly, we prove that the stable functor of a derived equivalence between two arbitrary rings provides an explicit triangle equivalence between the stable categories of Gorenstein projective modules. This generalizes a result of Y. Kato. Our results can also be applied to provide shorter proofs of some known results on homological conjectures.
Collections
Sign up for free to add this paper to one or more collections.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.