Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
129 tokens/sec
GPT-4o
28 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Self-similar scaling of density in complex real-world networks (1110.5609v2)

Published 25 Oct 2011 in nlin.AO, cs.SI, and physics.soc-ph

Abstract: Despite their diverse origin, networks of large real-world systems reveal a number of common properties including small-world phenomena, scale-free degree distributions and modularity. Recently, network self-similarity as a natural outcome of the evolution of real-world systems has also attracted much attention within the physics literature. Here we investigate the scaling of density in complex networks under two classical box-covering renormalizations-network coarse-graining-and also different community-based renormalizations. The analysis on over 50 real-world networks reveals a power-law scaling of network density and size under adequate renormalization technique, yet irrespective of network type and origin. The results thus advance a recent discovery of a universal scaling of density among different real-world networks [Laurienti et al., Physica A 390 (20) (2011) 3608-3613.] and imply an existence of a scale-free density also within-among different self-similar scales of-complex real-world networks. The latter further improves the comprehension of self-similar structure in large real-world networks with several possible applications.

Citations (92)

Summary

We haven't generated a summary for this paper yet.