Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
169 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Bootstrapping Ternary Relation Extractors (1511.08952v2)

Published 29 Nov 2015 in cs.CL and cs.AI

Abstract: Binary relation extraction methods have been widely studied in recent years. However, few methods have been developed for higher n-ary relation extraction. One limiting factor is the effort required to generate training data. For binary relations, one only has to provide a few dozen pairs of entities per relation, as training data. For ternary relations (n=3), each training instance is a triplet of entities, placing a greater cognitive load on people. For example, many people know that Google acquired Youtube but not the dollar amount or the date of the acquisition and many people know that Hillary Clinton is married to Bill Clinton by not the location or date of their wedding. This makes higher n-nary training data generation a time consuming exercise in searching the Web. We present a resource for training ternary relation extractors. This was generated using a minimally supervised yet effective approach. We present statistics on the size and the quality of the dataset.

Summary

We haven't generated a summary for this paper yet.