Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 85 tok/s
Gemini 2.5 Pro 39 tok/s Pro
GPT-5 Medium 35 tok/s Pro
GPT-5 High 19 tok/s Pro
GPT-4o 98 tok/s Pro
GPT OSS 120B 468 tok/s Pro
Kimi K2 202 tok/s Pro
2000 character limit reached

Stratifying systems over the hereditary path algebra with quiver $\mathbb{A}_{p,q}$ (1511.05976v1)

Published 18 Nov 2015 in math.RT

Abstract: The authors have proved in [J. Algebra Appl. 14 (2015), no. 6] that the size of a stratifying system over a finite-dimensional hereditary path algebra $A$ is at most $n$, where $n$ is the number of isomorphism classes of simple $A$-modules. Moreover, if $A$ is of Euclidean type a stratifying system over $A$ has at most $n-2$ regular modules. In this work, we construct a family of stratifying systems of size $n$ with a maximal number of regular elements, over the hereditary path algebra with quiver $\widetilde{\mathbb {A}}_{p,q} $, canonically oriented.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Ai Generate Text Spark Streamline Icon: https://streamlinehq.com

Paper Prompts

Sign up for free to create and run prompts on this paper using GPT-5.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.