Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 62 tok/s
Gemini 2.5 Pro 47 tok/s Pro
GPT-5 Medium 12 tok/s Pro
GPT-5 High 10 tok/s Pro
GPT-4o 91 tok/s Pro
Kimi K2 139 tok/s Pro
GPT OSS 120B 433 tok/s Pro
Claude Sonnet 4 31 tok/s Pro
2000 character limit reached

Shape Dependence of Entanglement Entropy in Conformal Field Theories (1511.05179v2)

Published 16 Nov 2015 in hep-th

Abstract: We study universal features in the shape dependence of entanglement entropy in the vacuum state of a conformal field theory (CFT) on $\mathbb{R}{1,d-1}$. We consider the entanglement entropy across a deformed planar or spherical entangling surface in terms of a perturbative expansion in the infinitesimal shape deformation. In particular, we focus on the second order term in this expansion, known as the entanglement density. This quantity is known to be non-positive by the strong-subadditivity property. We show from a purely field theory calculation that the non-local part of the entanglement density in any CFT is universal, and proportional to the coefficient $C_T$ appearing in the two-point function of stress tensors in that CFT. As applications of our result, we prove the conjectured universality of the corner term coefficient $\frac{\sigma}{C_T}=\frac{\pi2}{24}$ in $d=3$ CFTs, and the holographic Mezei formula for entanglement entropy across deformed spheres.

Citations (127)

Summary

We haven't generated a summary for this paper yet.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.