Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 54 tok/s
Gemini 2.5 Pro 50 tok/s Pro
GPT-5 Medium 18 tok/s Pro
GPT-5 High 31 tok/s Pro
GPT-4o 105 tok/s Pro
Kimi K2 182 tok/s Pro
GPT OSS 120B 466 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Whom Should We Sense in "Social Sensing" -- Analyzing Which Users Work Best for Social Media Now-Casting (1511.04134v1)

Published 13 Nov 2015 in cs.SI and cs.CY

Abstract: Given the ever increasing amount of publicly available social media data, there is growing interest in using online data to study and quantify phenomena in the offline "real" world. As social media data can be obtained in near real-time and at low cost, it is often used for "now-casting" indices such as levels of flu activity or unemployment. The term "social sensing" is often used in this context to describe the idea that users act as "sensors", publicly reporting their health status or job losses. Sensor activity during a time period is then typically aggregated in a "one tweet, one vote" fashion by simply counting. At the same time, researchers readily admit that social media users are not a perfect representation of the actual population. Additionally, users differ in the amount of details of their personal lives that they reveal. Intuitively, it should be possible to improve now-casting by assigning different weights to different user groups. In this paper, we ask "How does social sensing actually work?" or, more precisely, "Whom should we sense--and whom not--for optimal results?". We investigate how different sampling strategies affect the performance of now-casting of two common offline indices: flu activity and unemployment rate. We show that now-casting can be improved by 1) applying user filtering techniques and 2) selecting users with complete profiles. We also find that, using the right type of user groups, now-casting performance does not degrade, even when drastically reducing the size of the dataset. More fundamentally, we describe which type of users contribute most to the accuracy by asking if "babblers are better". We conclude the paper by providing guidance on how to select better user groups for more accurate now-casting.

Citations (20)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.

Authors (2)

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube