Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
133 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

How far can we go without convolution: Improving fully-connected networks (1511.02580v1)

Published 9 Nov 2015 in cs.LG and cs.NE

Abstract: We propose ways to improve the performance of fully connected networks. We found that two approaches in particular have a strong effect on performance: linear bottleneck layers and unsupervised pre-training using autoencoders without hidden unit biases. We show how both approaches can be related to improving gradient flow and reducing sparsity in the network. We show that a fully connected network can yield approximately 70% classification accuracy on the permutation-invariant CIFAR-10 task, which is much higher than the current state-of-the-art. By adding deformations to the training data, the fully connected network achieves 78% accuracy, which is just 10% short of a decent convolutional network.

Citations (49)

Summary

We haven't generated a summary for this paper yet.