Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 34 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 27 tok/s Pro
GPT-5 High 30 tok/s Pro
GPT-4o 80 tok/s Pro
Kimi K2 198 tok/s Pro
GPT OSS 120B 461 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

Improving Covariate Balance in 2^K Factorial Designs via Rerandomization (1511.01973v1)

Published 6 Nov 2015 in stat.ME

Abstract: Factorial designs are widely used in agriculture, engineering, and the social sciences to study the causal effects of several factors simultaneously on a response. The objective of such a design is to estimate all factorial effects of interest, which typically include main effects and interactions among factors. To estimate factorial effects with high precision when a large number of pre-treatment covariates are present, balance among covariates across treatment groups should be ensured. We propose utilizing rerandomization to ensure covariate balance in factorial designs. Although both factorial designs and rerandomization have been discussed before, the combination has not. Here, theoretical properties of rerandomization for factorial designs are established, and empirical results are explored using an application from the New York Department of Education.

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.