Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 47 tok/s
Gemini 2.5 Pro 44 tok/s Pro
GPT-5 Medium 13 tok/s Pro
GPT-5 High 12 tok/s Pro
GPT-4o 64 tok/s Pro
Kimi K2 160 tok/s Pro
GPT OSS 120B 452 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Hybrid scheme for modeling local field potentials from point-neuron networks (1511.01681v2)

Published 5 Nov 2015 in q-bio.NC

Abstract: Due to rapid advances in multielectrode recording technology, the local field potential (LFP) has again become a popular measure of neuronal activity in both basic research and clinical applications. Proper understanding of the LFP requires detailed mathematical modeling incorporating the anatomical and electrophysiological features of neurons near the recording electrode, as well as synaptic inputs from the entire network. Here we propose a hybrid modeling scheme combining the efficiency of commonly used simplified point-neuron network models with the biophysical principles underlying LFP generation by real neurons. The scheme can be used with an arbitrary number of point-neuron network populations. The LFP predictions rely on populations of network-equivalent, anatomically reconstructed multicompartment neuron models with layer-specific synaptic connectivity. The present scheme allows for a full separation of the network dynamics simulation and LFP generation. For illustration, we apply the scheme to a full-scale cortical network model for a $\sim$1 mm$2$ patch of primary visual cortex and predict laminar LFPs for different network states, assess the relative LFP contribution from different laminar populations, and investigate the role of synaptic input correlations and neuron density on the LFP. The generic nature of the hybrid scheme and its publicly available implementation in \texttt{hybridLFPy} form the basis for LFP predictions from other point-neuron network models, as well as extensions of the current application to larger circuitry and additional biological detail.

Citations (62)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.