Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 83 tok/s
Gemini 2.5 Pro 42 tok/s Pro
GPT-5 Medium 30 tok/s Pro
GPT-5 High 36 tok/s Pro
GPT-4o 108 tok/s Pro
Kimi K2 220 tok/s Pro
GPT OSS 120B 473 tok/s Pro
Claude Sonnet 4 39 tok/s Pro
2000 character limit reached

Tests for High-Dimensional Covariance Matrices Using Random Matrix Projection (1511.01611v1)

Published 5 Nov 2015 in stat.ME

Abstract: The classic likelihood ratio test for testing the equality of two covariance matrices breakdowns due to the singularity of the sample covariance matrices when the data dimension $p$ is larger than the sample size $n$. In this paper, we present a conceptually simple method using random projection to project the data onto the one-dimensional random subspace so that the conventional methods can be applied. Both one-sample and two-sample tests for high-dimensional covariance matrices are studied. Asymptotic results are established and numerical results are given to compare our method with state-of-the-art methods in the literature.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.

Authors (2)