Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 91 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 26 tok/s Pro
GPT-5 High 24 tok/s Pro
GPT-4o 95 tok/s Pro
Kimi K2 209 tok/s Pro
GPT OSS 120B 458 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Motivic Donaldson--Thomas invariants of some quantized threefolds (1510.08116v1)

Published 27 Oct 2015 in math.AG, hep-th, and math.QA

Abstract: This paper is motivated by the question of how motivic Donaldson--Thomas invariants behave in families. We compute the invariants for some simple families of noncommutative Calabi--Yau threefolds, defined by quivers with homogeneous potentials. These families give deformation quantizations of affine three-space, the resolved conifold, and the resolution of the transversal $A_n$-singularity. It turns out that their invariants are generically constant, but jump at special values of the deformation parameter, such as roots of unity. The corresponding generating series are written in closed form, as plethystic exponentials of simple rational functions. While our results are limited by the standard dimensional reduction techniques that we employ, they nevertheless allow us to conjecture formulae for more interesting cases, such as the elliptic Sklyanin algebras.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Ai Generate Text Spark Streamline Icon: https://streamlinehq.com

Paper Prompts

Sign up for free to create and run prompts on this paper using GPT-5.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.