Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 48 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 26 tok/s Pro
GPT-5 High 19 tok/s Pro
GPT-4o 107 tok/s Pro
Kimi K2 205 tok/s Pro
GPT OSS 120B 473 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

A survey of complex dimensions, measurability, and the lattice/nonlattice dichotomy (1510.06467v3)

Published 22 Oct 2015 in math-ph, math.MP, and math.NT

Abstract: The theory of complex dimensions of fractal strings developed by Lapidus and van Frankenhuijsen has proven to be a powerful tool for the study of Minkowski measurability of fractal subsets of the real line. In a very general setting, the Minkowski measurability of such sets is characterized by the structure of corresponding complex dimensions. Also, this tool is particularly effective in the setting of self-similar fractal subsets of $\mathbb{R}$ which have been shown to be Minkowski measurable if and only if they are nonlattice. This paper features a survey on the pertinent results of Lapidus and van Frankenhuijsen and a preliminary extension of the theory of complex dimensions to subsets of Euclidean space, with an emphasis on self-similar sets that satisfy various separation conditions. This extension is developed in the context of box-counting measurability, an analog of Minkowski measurability, which is shown to be characterized by complex dimensions under certain mild conditions.

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.