Papers
Topics
Authors
Recent
AI Research Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 78 tok/s
Gemini 2.5 Pro 46 tok/s Pro
GPT-5 Medium 12 tok/s Pro
GPT-5 High 14 tok/s Pro
GPT-4o 89 tok/s Pro
Kimi K2 212 tok/s Pro
GPT OSS 120B 472 tok/s Pro
Claude Sonnet 4 39 tok/s Pro
2000 character limit reached

Bijections for planar maps with boundaries (1510.05194v3)

Published 18 Oct 2015 in math.CO

Abstract: We present bijections for planar maps with boundaries. In particular, we obtain bijections for triangulations and quadrangulations of the sphere with boundaries of prescribed lengths. For triangulations we recover the beautiful factorized formula obtained by Krikun using a (technically involved) generating function approach. The analogous formula for quadrangulations is new. We also obtain a far-reaching generalization for other face-degrees. In fact, all the known enumerative formulas for maps with boundaries are proved bijectively in the present article (and several new formulas are obtained). Our method is to show that maps with boundaries can be endowed with certain "canonical" orientations, making them amenable to the master bijection approach we developed in previous articles. As an application of our enumerative formulas, we note that they provide an exact solution of the dimer model on rooted triangulations and quadrangulations.

Summary

We haven't generated a summary for this paper yet.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube