Papers
Topics
Authors
Recent
Search
2000 character limit reached

Moment estimates implied by modified log-Sobolev inequalities

Published 24 Sep 2015 in math.PR and math.FA | (1509.07565v1)

Abstract: We study a class of logarithmic Sobolev inequalities with a general form of the energy functional. The class generalizes various examples of modified logarithmic Sobolev inequalities considered previously in the literature. Refining a method of Aida and Stroock for the classical logarithmic Sobolev inequality, we prove that if a measure on $\mathbb{R}n$ satisfies a modified logarithmic Sobolev inequality then it satisfies a family of $Lp$-Sobolev-type inequalities with non-Euclidean norms of gradients (and dimension-independent constants). The latter are shown to yield various concentration-type estimates for deviations of smooth (not necessarily Lipschitz) functions and measures of enlargements of sets corresponding to non-Euclidean norms. We also prove a two-level concentration result for functions of bounded Hessian and measures satisfying the classical logarithmic Sobolev inequality.

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.