Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 97 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 21 tok/s Pro
GPT-5 High 18 tok/s Pro
GPT-4o 92 tok/s Pro
GPT OSS 120B 468 tok/s Pro
Kimi K2 175 tok/s Pro
2000 character limit reached

Moment estimates implied by modified log-Sobolev inequalities (1509.07565v1)

Published 24 Sep 2015 in math.PR and math.FA

Abstract: We study a class of logarithmic Sobolev inequalities with a general form of the energy functional. The class generalizes various examples of modified logarithmic Sobolev inequalities considered previously in the literature. Refining a method of Aida and Stroock for the classical logarithmic Sobolev inequality, we prove that if a measure on $\mathbb{R}n$ satisfies a modified logarithmic Sobolev inequality then it satisfies a family of $Lp$-Sobolev-type inequalities with non-Euclidean norms of gradients (and dimension-independent constants). The latter are shown to yield various concentration-type estimates for deviations of smooth (not necessarily Lipschitz) functions and measures of enlargements of sets corresponding to non-Euclidean norms. We also prove a two-level concentration result for functions of bounded Hessian and measures satisfying the classical logarithmic Sobolev inequality.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Ai Generate Text Spark Streamline Icon: https://streamlinehq.com

Paper Prompts

Sign up for free to create and run prompts on this paper using GPT-5.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.