Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
139 tokens/sec
GPT-4o
47 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Deep Boltzmann Machines in Estimation of Distribution Algorithms for Combinatorial Optimization (1509.06535v2)

Published 22 Sep 2015 in cs.NE

Abstract: Estimation of Distribution Algorithms (EDAs) require flexible probability models that can be efficiently learned and sampled. Deep Boltzmann Machines (DBMs) are generative neural networks with these desired properties. We integrate a DBM into an EDA and evaluate the performance of this system in solving combinatorial optimization problems with a single objective. We compare the results to the Bayesian Optimization Algorithm. The performance of DBM-EDA was superior to BOA for difficult additively decomposable functions, i.e., concatenated deceptive traps of higher order. For most other benchmark problems, DBM-EDA cannot clearly outperform BOA, or other neural network-based EDAs. In particular, it often yields optimal solutions for a subset of the runs (with fewer evaluations than BOA), but is unable to provide reliable convergence to the global optimum competitively. At the same time, the model building process is computationally more expensive than that of other EDAs using probabilistic models from the neural network family, such as DAE-EDA.

Citations (7)

Summary

We haven't generated a summary for this paper yet.