Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
139 tokens/sec
GPT-4o
47 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Scalability of using Restricted Boltzmann Machines for Combinatorial Optimization (1411.7542v1)

Published 27 Nov 2014 in cs.NE

Abstract: Estimation of Distribution Algorithms (EDAs) require flexible probability models that can be efficiently learned and sampled. Restricted Boltzmann Machines (RBMs) are generative neural networks with these desired properties. We integrate an RBM into an EDA and evaluate the performance of this system in solving combinatorial optimization problems with a single objective. We assess how the number of fitness evaluations and the CPU time scale with problem size and with problem complexity. The results are compared to the Bayesian Optimization Algorithm, a state-of-the-art EDA. Although RBM-EDA requires larger population sizes and a larger number of fitness evaluations, it outperforms BOA in terms of CPU times, in particular if the problem is large or complex. RBM-EDA requires less time for model building than BOA. These results highlight the potential of using generative neural networks for combinatorial optimization.

Citations (28)

Summary

We haven't generated a summary for this paper yet.