Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
139 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Efficient particle continuation model predictive control (1509.02852v1)

Published 9 Sep 2015 in math.OC and cs.SY

Abstract: Continuation model predictive control (MPC), introduced by T. Ohtsuka in 2004, uses Krylov-Newton approaches to solve MPC optimization and is suitable for nonlinear and minimum time problems. We suggest particle continuation MPC in the case, where the system dynamics or constraints can discretely change on-line. We propose an algorithm for on-line controller implementation of continuation MPC for ensembles of predictions corresponding to various anticipated changes and demonstrate its numerical effectiveness for a test minimum time problem arriving to a destination. Simultaneous on-line particle computation of ensembles of controls, for several dynamically changing system dynamics, allows choosing the optimal destination on-line and adapt it as needed.

Citations (2)

Summary

We haven't generated a summary for this paper yet.