Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
97 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

An efficient bounded-variable nonlinear least-squares algorithm for embedded MPC (1908.07247v2)

Published 20 Aug 2019 in math.OC, cs.SY, and eess.SY

Abstract: This paper presents a new approach to solve linear and nonlinear model predictive control (MPC) problems that requires small memory footprint and throughput and is particularly suitable when the model and/or controller parameters change at runtime. Typically MPC requires two phases: 1) construct an optimization problem based on the given MPC parameters (prediction model, tuning weights, prediction horizon, and constraints), which results in a quadratic or nonlinear programming problem, and then 2) call an optimization algorithm to solve the resulting problem. In the proposed approach the problem construction step is systematically eliminated, as in the optimization algorithm problem matrices are expressed in terms of abstract functions of the MPC parameters. We present a unifying algorithmic framework based on active-set methods with bounded variables that can cope with linear, nonlinear, and adaptive MPC variants based on a broad class of prediction models and a sum-of-squares cost function. The theoretical and numerical results demonstrate the potential, applicability, and efficiency of the proposed framework for practical real-time embedded MPC.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (2)
  1. Nilay Saraf (1 paper)
  2. Alberto Bemporad (72 papers)
Citations (5)

Summary

We haven't generated a summary for this paper yet.