Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
133 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

A Class of Deterministic Sensing Matrices and Their Application in Harmonic Detection (1509.02628v1)

Published 9 Sep 2015 in cs.IT and math.IT

Abstract: In this paper, a class of deterministic sensing matrices are constructed by selecting rows from Fourier matrices. These matrices have better performance in sparse recovery than random partial Fourier matrices. The coherence and restricted isometry property of these matrices are given to evaluate their capacity as compressive sensing matrices. In general, compressed sensing requires random sampling in data acquisition, which is difficult to implement in hardware. By using these sensing matrices in harmonic detection, a deterministic sampling method is provided. The frequencies and amplitudes of the harmonic components are estimated from under-sampled data. The simulations show that this under-sampled method is feasible and valid in noisy environments.

Citations (5)

Summary

We haven't generated a summary for this paper yet.