Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 64 tok/s
Gemini 2.5 Pro 50 tok/s Pro
GPT-5 Medium 30 tok/s Pro
GPT-5 High 35 tok/s Pro
GPT-4o 77 tok/s Pro
Kimi K2 174 tok/s Pro
GPT OSS 120B 457 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Quadratic invariants of the elasticity tensor (1509.02315v1)

Published 8 Sep 2015 in cond-mat.other, math-ph, and math.MP

Abstract: We study the quadratic invariants of the elasticity tensor in the framework of its unique irreducible decomposition. The key point is that this decomposition generates the direct sum reduction of the elasticity tensor space. The corresponding subspaces are completely independent and even orthogonal relative to the Euclidean (Frobenius) scalar product. We construct a basis set of seven quadratic invariants that emerge in a natural and systematic way. Moreover, the completeness of this basis and the independence of the basis tensors follow immediately from the direct sum representation of the elasticity tensor space. We define the Cauchy factor of an anisotropic material as a dimensionless measure of a closeness to a pure Cauchy material and a similar isotropic factor is as a measure for a closeness of an anisotropic material to its isotropic prototype. For cubic crystals, these factors are explicitly displayed and cubic crystal average of an arbitrary elastic material is derived.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.

Authors (1)