Papers
Topics
Authors
Recent
AI Research Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 71 tok/s
Gemini 2.5 Pro 50 tok/s Pro
GPT-5 Medium 21 tok/s Pro
GPT-5 High 19 tok/s Pro
GPT-4o 91 tok/s Pro
Kimi K2 164 tok/s Pro
GPT OSS 120B 449 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Symmetry and spectral properties for viscosity solutions of fully nonlinear equations (1508.00708v1)

Published 4 Aug 2015 in math.AP

Abstract: We study symmetry properties of viscosity solutions of fully nonlinear uniformly elliptic equations. We show that if $u$ is a viscosity solution of a rotationally invariant equation of the form $F(x,D2u)+f(x,u)=0$, then the operator $\mathcal{L}_u=\mathcal{M}++\frac{\partial f}{\partial u}(x,u)$, where $\mathcal{M}+$ is the Pucci's sup--operator, plays the role of the linearized operator at $u$. In particular, we prove that if $u$ is a solution in a radial bounded domain, if $f$ is convex in $u$ and if the principal eigenvalue of $\mathcal{L}_u$ (associated with positive eigenfunctions) in any half domain is nonnegative, then $u$ is foliated Schwarz symmetric. We apply our symmetry results to obtain bounds on the spectrum and to deduce properties of possible nodal eigenfunctions for the operator $\mathcal{M}+$.

Summary

We haven't generated a summary for this paper yet.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.