Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 82 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 40 tok/s Pro
GPT-5 High 38 tok/s Pro
GPT-4o 96 tok/s Pro
Kimi K2 185 tok/s Pro
GPT OSS 120B 465 tok/s Pro
Claude Sonnet 4 30 tok/s Pro
2000 character limit reached

Estimating stellar atmospheric parameters based on LASSO and support-vector regression (1508.00369v1)

Published 3 Aug 2015 in astro-ph.SR

Abstract: A scheme for estimating atmospheric parameters T${eff}$, log$~g$, and [Fe/H] is proposed on the basis of Least Absolute Shrinkage and Selection Operator (LASSO) algorithm and Haar wavelet. The proposed scheme consists of three processes. A spectrum is decomposed using the Haar wavelet transform and low-frequency components at the fourth level are considered as candidate features. Then, spectral features from the candidate features are detected using the LASSO algorithm to estimate the atmospheric parameters. Finally, atmospheric parameters are estimated from the extracted spectral features using the support-vector regression (SVR) method. The proposed scheme was evaluated using three sets of stellar spectra respectively from Sloan Digital Sky Survey (SDSS), Large Sky Area Multi-object Fiber Spectroscopic Telescope (LAMOST), and Kurucz's model, respectively. The mean absolute errors are as follows: for 40~000 SDSS spectra, 0.0062 dex for log~T${eff}$ (85.83 K for T${eff}$), 0.2035 dex for log$~g$ and 0.1512 dex for [Fe/H]; for 23963 LAMOST spectra, 0.0074 dex for log~T${eff}$ (95.37 K for T${eff}$), 0.1528 dex for log~$g$, and 0.1146 dex for [Fe/H]; and for 10469 synthetic spectra, 0.0010 dex for log T${eff}$(14.42K for T$_{eff}$), 0.0123 dex for log~$g$, and 0.0125 dex for [Fe/H].

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.

Authors (2)

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube