Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 52 tok/s
Gemini 2.5 Pro 47 tok/s Pro
GPT-5 Medium 18 tok/s Pro
GPT-5 High 13 tok/s Pro
GPT-4o 100 tok/s Pro
Kimi K2 192 tok/s Pro
GPT OSS 120B 454 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Extended ADMM and BCD for Nonseparable Convex Minimization Models with Quadratic Coupling Terms: Convergence Analysis and Insights (1508.00193v4)

Published 2 Aug 2015 in math.OC

Abstract: In this paper, we establish the convergence of the proximal alternating direction method of multipliers (ADMM) and block coordinate descent (BCD) for nonseparable minimization models with quadratic coupling terms. The novel convergence results presented in this paper answer several open questions that have been the subject of considerable discussion. We firstly extend the 2-block proximal ADMM to linearly constrained convex optimization with a coupled quadratic objective function, an area where theoretical understanding is currently lacking, and prove that the sequence generated by the proximal ADMM converges in point-wise manner to a primal-dual solution pair. Moreover, we apply randomly permuted ADMM (RPADMM) to nonseparable multi-block convex optimization, and prove its expected convergence for a class of nonseparable quadratic programming problems. When the linear constraint vanishes, the 2-block proximal ADMM and RPADMM reduce to the 2-block cyclic proximal BCD method and randomly permuted BCD (RPBCD). Our study provides the first iterate convergence result for 2-block cyclic proximal BCD without assuming the boundedness of the iterates. We also theoretically establish the expected iterate convergence result concerning multi-block RPBCD for convex quadratic optimization. In addition, we demonstrate that RPBCD may have a worse convergence rate than cyclic proximal BCD for 2-block convex quadratic minimization problems. Although the results on RPADMM and RPBCD are restricted to quadratic minimization models, they provide some interesting insights: 1) random permutation makes ADMM and BCD more robust for multi-block convex minimization problems; 2) cyclic BCD may outperform RPBCD for "nice" problems, and therefore RPBCD should be applied with caution when solving general convex optimization problems.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.