Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
139 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Closeness Centrality via the Condorcet Principle (2112.00494v1)

Published 1 Dec 2021 in cs.SI and cs.AI

Abstract: We uncover a new relation between Closeness centrality and the Condorcet principle. We define a Condorcet winner in a graph as a node that compared to any other node is closer to more nodes. In other words, if we assume that nodes vote on a closer candidate, a Condorcet winner would win a two-candidate election against any other node in a plurality vote. We show that Closeness centrality and its random-walk version, Random-Walk Closeness centrality, are the only classic centrality measures that are Condorcet consistent on trees, i.e., if a Condorcet winner exists, they rank it first. While they are not Condorcet consistent in general graphs, we show that Closeness centrality satisfies the Condorcet Comparison property that states that out of two adjacent nodes, the one preferred by more nodes has higher centrality. We show that Closeness centrality is the only regular distance-based centrality with such a property.

Citations (8)

Summary

We haven't generated a summary for this paper yet.