Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 81 tok/s
Gemini 2.5 Pro 44 tok/s Pro
GPT-5 Medium 22 tok/s Pro
GPT-5 High 25 tok/s Pro
GPT-4o 81 tok/s Pro
Kimi K2 172 tok/s Pro
GPT OSS 120B 434 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Improving heritability estimation by a variable selection approach in sparse high dimensional linear mixed models (1507.06245v3)

Published 22 Jul 2015 in math.ST and stat.TH

Abstract: Motivated by applications in neuroanatomy, we propose a novel methodology for estimating the heritability which corresponds to the proportion of phenotypic variance which can be explained by genetic factors. Estimating this quantity for neuroanatomical features is a fundamental challenge in psychiatric disease research. Since the phenotypic variations may only be due to a small fraction of the available genetic information, we propose an estimator of the heritability that can be used in high dimensional sparse linear mixed models. Our method consists of three steps. Firstly, a variable selection stage is performed in order to recover the support of the genetic effects -- also called causal variants -- that is to find the genetic effects which really explain the phenotypic variations. Secondly, we propose a maximum likelihood strategy for estimating the heritability which only takes into account the causal genetic effects found in the first step. Thirdly, we compute the standard error and the 95% confidence interval associated to our heritability estimator thanks to a nonparametric bootsrap approach. Our main contribution consists in providing an estimation of the heritability with standard errors substantially smaller than methods without variable selection when the genetic effects are very sparse. Since the real genetic architecture is in general unknown in practice, we also propose an empirical criterion which allows the user to decide whether it is relevant to apply a variable selection based approach or not. We illustrate the performance of our methodology on synthetic and real neuroanatomic data coming from the Imagen project. We also show that our approach has a very low computational burden and is very efficient from a statistical point of view.

Summary

We haven't generated a summary for this paper yet.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube