Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 34 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 27 tok/s Pro
GPT-5 High 30 tok/s Pro
GPT-4o 80 tok/s Pro
Kimi K2 198 tok/s Pro
GPT OSS 120B 461 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

Cutoff on all Ramanujan graphs (1507.04725v5)

Published 16 Jul 2015 in math.PR and math.CO

Abstract: We show that on every Ramanujan graph $G$, the simple random walk exhibits cutoff: when $G$ has $n$ vertices and degree $d$, the total-variation distance of the walk from the uniform distribution at time $t=\frac{d}{d-2}\log_{d-1} n + s\sqrt{\log n}$ is asymptotically $\mathbb{P}(Z > c\, s)$ where $Z$ is a standard normal variable and $c=c(d)$ is an explicit constant. Furthermore, for all $1 \leq p \leq \infty$, $d$-regular Ramanujan graphs minimize the asymptotic $Lp$-mixing time for SRW among all $d$-regular graphs. Our proof also shows that, for every vertex $x$ in $G$ as above, its distance from $n-o(n)$ of the vertices is asymptotically $\log_{d-1} n$.

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.