Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
173 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

On the Polytope Escape Problem for Continuous Linear Dynamical Systems (1507.03166v2)

Published 11 Jul 2015 in cs.CC

Abstract: The Polyhedral Escape Problem for continuous linear dynamical systems consists of deciding, given an affine function $f: \mathbb{R}{d} \rightarrow \mathbb{R}{d}$ and a convex polyhedron $\mathcal{P} \subseteq \mathbb{R}{d}$, whether, for some initial point $\boldsymbol{x}{0}$ in $\mathcal{P}$, the trajectory of the unique solution to the differential equation $\dot{\boldsymbol{x}}(t)=f(\boldsymbol{x}(t))$, $\boldsymbol{x}(0)=\boldsymbol{x}{0}$, is entirely contained in $\mathcal{P}$. We show that this problem is decidable, by reducing it in polynomial time to the decision version of linear programming with real algebraic coefficients, thus placing it in $\exists \mathbb{R}$, which lies between NP and PSPACE. Our algorithm makes use of spectral techniques and relies among others on tools from Diophantine approximation.

Citations (5)

Summary

We haven't generated a summary for this paper yet.