Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
125 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Tree density estimation (2111.11971v5)

Published 23 Nov 2021 in math.ST, cs.LG, stat.ML, and stat.TH

Abstract: We study the problem of estimating the density $f(\boldsymbol x)$ of a random vector ${\boldsymbol X}$ in $\mathbb Rd$. For a spanning tree $T$ defined on the vertex set ${1,\dots ,d}$, the tree density $f_{T}$ is a product of bivariate conditional densities. An optimal spanning tree minimizes the Kullback-Leibler divergence between $f$ and $f_{T}$. From i.i.d. data we identify an optimal tree $T*$ and efficiently construct a tree density estimate $f_n$ such that, without any regularity conditions on the density $f$, one has $\lim_{n\to \infty} \int |f_n(\boldsymbol x)-f_{T*}(\boldsymbol x)|d\boldsymbol x=0$ a.s. For Lipschitz $f$ with bounded support, $\mathbb E \left{ \int |f_n(\boldsymbol x)-f_{T*}(\boldsymbol x)|d\boldsymbol x\right}=O\big(n{-1/4}\big)$, a dimension-free rate.

Summary

We haven't generated a summary for this paper yet.