The complexity of dynamics in small neural circuits (1506.08995v2)
Abstract: Mean-field theory is a powerful tool for studying large neural networks. However, when the system is composed of a few neurons, macroscopic differences between the mean-field approximation and the real behavior of the network can arise. Here we introduce a study of the dynamics of a small firing-rate network with excitatory and inhibitory populations, in terms of local and global bifurcations of the neural activity. Our approach is analytically tractable in many respects, and sheds new light on the finite-size effects of the system. In particular, we focus on the formation of multiple branching solutions of the neural equations through spontaneous symmetry-breaking, since this phenomenon increases considerably the complexity of the dynamical behavior of the network. For these reasons, branching points may reveal important mechanisms through which neurons interact and process information, which are not accounted for by the mean-field approximation.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Collections
Sign up for free to add this paper to one or more collections.