Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
119 tokens/sec
GPT-4o
56 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Automagically encoding Adverse Drug Reactions in MedDRA (1506.08052v3)

Published 26 Jun 2015 in cs.CL

Abstract: Pharmacovigilance is the field of science devoted to the collection, analysis and prevention of Adverse Drug Reactions (ADRs). Efficient strategies for the extraction of information about ADRs from free text resources are essential to support the work of experts, employed in the crucial task of detecting and classifying unexpected pathologies possibly related to drug assumptions. Narrative ADR descriptions may be collected in several way, e.g. by monitoring social networks or through the so called spontaneous reporting, the main method pharmacovigilance adopts in order to identify ADRs. The encoding of free-text ADR descriptions according to MedDRA standard terminology is central for report analysis. It is a complex work, which has to be manually implemented by the pharmacovigilance experts. The manual encoding is expensive (in terms of time). Moreover, a problem about the accuracy of the encoding may occur, since the number of reports is growing up day by day. In this paper, we propose MagiCoder, an efficient Natural Language Processing algorithm able to automatically derive MedDRA terminologies from free-text ADR descriptions. MagiCoder is part of VigiWork, a web application for online ADR reporting and analysis. From a practical view-point, MagiCoder radically reduces the revision time of ADR reports: the pharmacologist has simply to revise and validate the automatic solution versus the hard task of choosing solutions in the 70k terms of MedDRA. This improvement of the expert work efficiency has a meaningful impact on the quality of data analysis. Moreover, our procedure is general purpose. We developed MagiCoder for the Italian pharmacovigilance language, but preliminarily analyses show that it is robust to language and dictionary changes.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (5)
  1. Carlo Combi (4 papers)
  2. Riccardo Lora (1 paper)
  3. Ugo Moretti (2 papers)
  4. Marco Pagliarini (1 paper)
  5. Margherita Zorzi (16 papers)
Citations (14)

Summary

We haven't generated a summary for this paper yet.