Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
80 tokens/sec
GPT-4o
59 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
7 tokens/sec
GPT-4.1 Pro
50 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Automated Detection of Adverse Drug Reactions in the Biomedical Literature Using Convolutional Neural Networks and Biomedical Word Embeddings (1804.09148v1)

Published 24 Apr 2018 in cs.CL, cs.LG, and stat.ML

Abstract: Monitoring the biomedical literature for cases of Adverse Drug Reactions (ADRs) is a critically important and time consuming task in pharmacovigilance. The development of computer assisted approaches to aid this process in different forms has been the subject of many recent works. One particular area that has shown promise is the use of Deep Neural Networks, in particular, Convolutional Neural Networks (CNNs), for the detection of ADR relevant sentences. Using token-level convolutions and general purpose word embeddings, this architecture has shown good performance relative to more traditional models as well as Long Short Term Memory (LSTM) models. In this work, we evaluate and compare two different CNN architectures using the ADE corpus. In addition, we show that by de-duplicating the ADR relevant sentences, we can greatly reduce overoptimism in the classification results. Finally, we evaluate the use of word embeddings specifically developed for biomedical text and show that they lead to a better performance in this task.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (1)
Citations (10)