Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
169 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Global Optimality in Tensor Factorization, Deep Learning, and Beyond (1506.07540v1)

Published 24 Jun 2015 in cs.NA, cs.LG, and stat.ML

Abstract: Techniques involving factorization are found in a wide range of applications and have enjoyed significant empirical success in many fields. However, common to a vast majority of these problems is the significant disadvantage that the associated optimization problems are typically non-convex due to a multilinear form or other convexity destroying transformation. Here we build on ideas from convex relaxations of matrix factorizations and present a very general framework which allows for the analysis of a wide range of non-convex factorization problems - including matrix factorization, tensor factorization, and deep neural network training formulations. We derive sufficient conditions to guarantee that a local minimum of the non-convex optimization problem is a global minimum and show that if the size of the factorized variables is large enough then from any initialization it is possible to find a global minimizer using a purely local descent algorithm. Our framework also provides a partial theoretical justification for the increasingly common use of Rectified Linear Units (ReLUs) in deep neural networks and offers guidance on deep network architectures and regularization strategies to facilitate efficient optimization.

Citations (150)

Summary

We haven't generated a summary for this paper yet.