Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
120 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Natural Scene Recognition Based on Superpixels and Deep Boltzmann Machines (1506.07271v1)

Published 24 Jun 2015 in cs.CV

Abstract: The Deep Boltzmann Machines (DBM) is a state-of-the-art unsupervised learning model, which has been successfully applied to handwritten digit recognition and, as well as object recognition. However, the DBM is limited in scene recognition due to the fact that natural scene images are usually very large. In this paper, an efficient scene recognition approach is proposed based on superpixels and the DBMs. First, a simple linear iterative clustering (SLIC) algorithm is employed to generate superpixels of input images, where each superpixel is regarded as an input of a learning model. Then, a two-layer DBM model is constructed by stacking two restricted Boltzmann machines (RBMs), and a greedy layer-wise algorithm is applied to train the DBM model. Finally, a softmax regression is utilized to categorize scene images. The proposed technique can effectively reduce the computational complexity and enhance the performance for large natural image recognition. The approach is verified and evaluated by extensive experiments, including the fifteen-scene categories dataset the UIUC eight-sports dataset, and the SIFT flow dataset, are used to evaluate the proposed method. The experimental results show that the proposed approach outperforms other state-of-the-art methods in terms of recognition rate.

Citations (4)

Summary

We haven't generated a summary for this paper yet.