Papers
Topics
Authors
Recent
AI Research Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 73 tok/s
Gemini 2.5 Pro 46 tok/s Pro
GPT-5 Medium 13 tok/s Pro
GPT-5 High 14 tok/s Pro
GPT-4o 86 tok/s Pro
Kimi K2 156 tok/s Pro
GPT OSS 120B 388 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Nonparametric estimates of pricing functionals (1506.06568v2)

Published 22 Jun 2015 in q-fin.PR

Abstract: We analyze the empirical performance of several non-parametric estimators of the pricing functional for European options, using historical put and call prices on the S&P500 during the year 2012. Two main families of estimators are considered, obtained by estimating the pricing functional directly, and by estimating the (Black-Scholes) implied volatility surface, respectively. In each case simple estimators based on linear interpolation are constructed, as well as more sophisticated ones based on smoothing kernels, `a la Nadaraya-Watson. The results based on the analysis of the empirical pricing errors in an extensive out-of-sample study indicate that a simple approach based on the Black-Scholes formula coupled with linear interpolation of the volatility surface outperforms, both in accuracy and computational speed, all other methods.

Summary

We haven't generated a summary for this paper yet.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.