Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 64 tok/s
Gemini 2.5 Pro 50 tok/s Pro
GPT-5 Medium 30 tok/s Pro
GPT-5 High 35 tok/s Pro
GPT-4o 77 tok/s Pro
Kimi K2 174 tok/s Pro
GPT OSS 120B 457 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Author Identification using Multi-headed Recurrent Neural Networks (1506.04891v2)

Published 16 Jun 2015 in cs.CL, cs.LG, and cs.NE

Abstract: Recurrent neural networks (RNNs) are very good at modelling the flow of text, but typically need to be trained on a far larger corpus than is available for the PAN 2015 Author Identification task. This paper describes a novel approach where the output layer of a character-level RNN LLM is split into several independent predictive sub-models, each representing an author, while the recurrent layer is shared by all. This allows the recurrent layer to model the language as a whole without over-fitting, while the outputs select aspects of the underlying model that reflect their author's style. The method proves competitive, ranking first in two of the four languages.

Citations (127)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.

Authors (1)