$\mathbb{P}^1$-bundle bases and the prevalence of non-Higgsable structure in 4D F-theory models (1506.03204v2)
Abstract: We explore a large class of F-theory compactifications to four dimensions. We find evidence that gauge groups that cannot be Higgsed without breaking supersymmetry, often accompanied by associated matter fields, are a ubiquitous feature in the landscape of ${\cal N} = 1$ 4D F-theory constructions. In particular, we study 4D F-theory models that arise from compactification on threefold bases that are $\mathbb{P}1$ bundles over certain toric surfaces. These bases are one natural analogue to the minimal models for base surfaces for 6D F-theory compactifications. Of the roughly 100,000 bases that we study, only 80 are weak Fano bases in which there are no automatic singularities on the associated elliptic Calabi-Yau fourfolds, and 98.3% of the bases have geometrically non-Higgsable gauge factors. The $\mathbb{P}1$-bundle threefold bases we analyze contain a wide range of distinct surface topologies that support geometrically non-Higgsable clusters. Many of the bases that we consider contain $SU(3)\times SU(2)$ seven-brane clusters for generic values of deformation moduli; we analyze the relative frequency of this combination relative to the other four possible two-factor non-Higgsable product groups, as well as various other features such as geometrically non-Higgsable candidates for dark matter structure and phenomenological ($SU(2)$-charged) Higgs fields.
Collections
Sign up for free to add this paper to one or more collections.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.