Singular prior distributions and ill-conditioning in Bayesian D-optimal design for several nonlinear models (1506.02916v3)
Abstract: For Bayesian D-optimal design, we define a singular prior distribution for the model parameters as a prior distribution such that the determinant of the Fisher information matrix has a prior geometric mean of zero for all designs. For such a prior distribution, the Bayesian D-optimality criterion fails to select a design. For the exponential decay model, we characterize singularity of the prior distribution in terms of the expectations of a few elementary transformations of the parameter. For a compartmental model and several multi-parameter generalized linear models, we establish sufficient conditions for singularity of a prior distribution. For the generalized linear models we also obtain sufficient conditions for non-singularity. In the existing literature, weakly informative prior distributions are commonly recommended as a default choice for inference in logistic regression. Here it is shown that some of the recommended prior distributions are singular, and hence should not be used for Bayesian D-optimal design. Additionally, methods are developed to derive and assess Bayesian D-efficient designs when numerical evaluation of the objective function fails due to ill-conditioning, as often occurs for heavy-tailed prior distributions. These numerical methods are illustrated for logistic regression.
Collections
Sign up for free to add this paper to one or more collections.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.