Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
184 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

On the Reliability of Profile Matching Across Large Online Social Networks (1506.02289v1)

Published 7 Jun 2015 in cs.SI

Abstract: Matching the profiles of a user across multiple online social networks brings opportunities for new services and applications as well as new insights on user online behavior, yet it raises serious privacy concerns. Prior literature has proposed methods to match profiles and showed that it is possible to do it accurately, but using evaluations that focused on sampled datasets only. In this paper, we study the extent to which we can reliably match profiles in practice, across real-world social networks, by exploiting public attributes, i.e., information users publicly provide about themselves. Today's social networks have hundreds of millions of users, which brings completely new challenges as a reliable matching scheme must identify the correct matching profile out of the millions of possible profiles. We first define a set of properties for profile attributes--Availability, Consistency, non-Impersonability, and Discriminability (ACID)--that are both necessary and sufficient to determine the reliability of a matching scheme. Using these properties, we propose a method to evaluate the accuracy of matching schemes in real practical cases. Our results show that the accuracy in practice is significantly lower than the one reported in prior literature. When considering entire social networks, there is a non-negligible number of profiles that belong to different users but have similar attributes, which leads to many false matches. Our paper sheds light on the limits of matching profiles in the real world and illustrates the correct methodology to evaluate matching schemes in realistic scenarios.

Citations (129)

Summary

We haven't generated a summary for this paper yet.