Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 75 tok/s
Gemini 2.5 Pro 55 tok/s Pro
GPT-5 Medium 22 tok/s Pro
GPT-5 High 20 tok/s Pro
GPT-4o 113 tok/s Pro
Kimi K2 196 tok/s Pro
GPT OSS 120B 459 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Stochastic And-Or Grammars: A Unified Framework and Logic Perspective (1506.00858v3)

Published 2 Jun 2015 in cs.AI

Abstract: Stochastic And-Or grammars (AOG) extend traditional stochastic grammars of language to model other types of data such as images and events. In this paper we propose a representation framework of stochastic AOGs that is agnostic to the type of the data being modeled and thus unifies various domain-specific AOGs. Many existing grammar formalisms and probabilistic models in natural language processing, computer vision, and machine learning can be seen as special cases of this framework. We also propose a domain-independent inference algorithm of stochastic context-free AOGs and show its tractability under a reasonable assumption. Furthermore, we provide two interpretations of stochastic context-free AOGs as a subset of probabilistic logic, which connects stochastic AOGs to the field of statistical relational learning and clarifies their relation with a few existing statistical relational models.

Citations (4)

Summary

We haven't generated a summary for this paper yet.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.