Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
167 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Low-Complexity Robust Adaptive Beamforming Algorithms Based on Shrinkage for Mismatch Estimation (1505.06788v1)

Published 26 May 2015 in cs.IT and math.IT

Abstract: In this paper, we propose low-complexity robust adaptive beamforming (RAB) techniques that based on shrinkage methods. The only prior knowledge required by the proposed algorithms are the angular sector in which the actual steering vector is located and the antenna array geometry. We firstly present a Low-Complexity Shrinkage-Based Mismatch Estimation (LOCSME) algorithm to estimate the desired signal steering vector mismatch, in which the interference-plus-noise covariance (INC) matrix is estimated with Oracle Approximating Shrinkage (OAS) method and the weights are computed with matrix inversions. We then develop low-cost stochastic gradient (SG) recursions to estimate the INC matrix and update the beamforming weights, resulting in the proposed LOCSME-SG algorithm. Simulation results show that both LOCSME and LOCSME-SG achieve very good output signal-to-interference-plus-noise ratio (SINR) compared to previously reported adaptive RAB algorithms.

Summary

We haven't generated a summary for this paper yet.