A Class of Hamiltonians for a Three-Particle Fermionic System at Unitarity (1505.04132v2)
Abstract: We consider a quantum mechanical three-particle system made of two identical fermions of mass one and a different particle of mass $ m $, where each fermion interacts via a zero-range force with the different particle. In particular we study the unitary regime, i.e., the case of infinite two-body scattering length. The Hamiltonians describing the system are, by definition, self-adjoint extensions of the free Hamiltonian restricted on smooth functions vanishing at the two-body coincidence planes, i.e., where the positions of two interacting particles coincide. It is known that for $ m $ larger than a critical value $ m* \simeq (13.607){-1} $ a self-adjoint and lower bounded Hamiltonian $ H_0 $ can be constructed, whose domain is characterized in terms of the standard point-interaction boundary condition at each coincidence plane. Here we prove that for $ m \in( m,m{*}) $, where $ m{**} \simeq (8.62){-1} $, there is a further family of self-adjoint and lower bounded Hamiltonians $ H_{0,\beta} $, $ \beta \in \mathbb{R} $, describing the system. Using a quadratic form method, we give a rigorous construction of such Hamiltonians and we show that the elements of their domains satisfy a further boundary condition, characterizing the singular behavior when the positions of all the three particles coincide.
Collections
Sign up for free to add this paper to one or more collections.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.