Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
120 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Identification of stochastic operators (1505.00990v1)

Published 5 May 2015 in math.FA, cs.IT, math.IT, math.ST, and stat.TH

Abstract: Based on the here developed functional analytic machinery we extend the theory of operator sampling and identification to apply to operators with stochastic spreading functions. We prove that identification with a delta train signal is possible for a large class of stochastic operators that have the property that the autocorrelation of the spreading function is supported on a set of 4D volume less than one and this support set does not have a defective structure. In fact, unlike in the case of deterministic operator identification, the geometry of the support set has a significant impact on the identifiability of the considered operator class. Also, we prove that, analogous to the deterministic case, the restriction of the 4D volume of a support set to be less or equal to one is necessary for identifiability of a stochastic operator class.

Citations (16)

Summary

We haven't generated a summary for this paper yet.