Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
139 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Sampling and reconstruction of operators (1503.00628v1)

Published 2 Mar 2015 in cs.IT, math.FA, and math.IT

Abstract: We study the recovery of operators with bandlimited Kohn-Nirenberg symbol from the action of such operators on a weighted impulse train, a procedure we refer to as operator sampling. Kailath, and later Kozek and the authors have shown that operator sampling is possible if the symbol of the operator is bandlimited to a set with area less than one. In this paper we develop explicit reconstruction formulas for operator sampling that generalize reconstruction formulas for bandlimited functions. We give necessary and sufficient conditions on the sampling rate that depend on size and geometry of the bandlimiting set. Moreover, we show that under mild geometric conditions, classes of operators bandlimited to an unknown set of area less than one-half permit sampling and reconstruction. A similar result considering unknown sets of area less than one was independently achieved by Heckel and Boelcskei. Operators with bandlimited symbols have been used to model doubly dispersive communication channels with slowly-time-varying impulse response. The results in this paper are rooted in work by Bello and Kailath in the 1960s.

Citations (30)

Summary

We haven't generated a summary for this paper yet.